A Polar Magnetic Paleopole Associated with Apollinaris Patera, Mars

Benoit Langlais^{a,b} and Michael Purucker^c

^aCNRS, Université de Nantes, Nantes Atlantique Universités, Laboratoire de Planétologie et de Géodynamique, UMR 6112, 2 rue de la Houssinière, F-44000 Nantes, France phone: +33 (0) 252 125 497; fax: +33 (0) 251 125 268, email: benoit.langlais@univ-nantes.fr

> ^bNAS/NRC at Planetary Geodynamics Lab, NASA/GSFC, Greenbelt MD 20771, USA

^cRaytheon at Planetary Geodynamics Branch, code 698, NASA/GSFC, Greenbelt MD 20771, USA email: purucker@geomag.gsfc.nasa.gov

Abstract

A Martian paleomagnetic pole is calculated from a magnetic anomaly associated with the late Noachian age (and older) volcano Apollinaris Patera. This isolated volcano, located near the crustal dichotomy boundary at the Martian equator, has a correlative gravity anomaly, and was likely active for more than 10⁷ years. It is one of the only volcanoes on Mars known to have a substantial magnetic anomaly associated with it, and one of the only examples of correlative magnetic and gravity sources. Magnetic directions calculated using either low- or high-altitude data, and single or multiple equivalent source dipoles, are nearly horizontal and southward directed. Assuming a single dipolar source magnetization, the preferred paleopole is at 65°S, 59°E. Assuming a larger magnetized area leads to a cluster of paleopoles near 88°S, 99°E. This paleopole is very close to the current rotational pole, and very different from previously calculated paleopoles. Our preferred interpretation is that the Apollinaris Patera magnetization was acquired near the end of the life of the Martian dynamo, and that subsequent polar wander was minimal.

Key words: Mars; Magnetic Fields; Paleopoles; Apollinaris Patera;

1 1 Introduction — Geological setting

When compared to the Earth, Mars possesses a strong remanent lithospheric 2 field. It has been discovered by the Mars Global Surveyor (MGS) mission. The 3 present magnetic field of Mars likely is the signature of an ancient Earth-like 4 geodynamo magnetic field (Stevenson, 2001). It can be very intense locally, 5 reaching 1500 nT at 100 km over Terra Cimmeria and Terra Sirenum. The 6 strength of this magnetic field may be due to multiple factors, including a 7 thick cool lithosphere with a high magnetic material content, and a strong 8 paleodynamo. 9

Several global models of the present remanent field have been developed in
order to better understand the ancient magnetic field of Mars. Early studies

directly utilized the magnetic measurements (Acuña et al., 1999; Connerney 1 et al., 2001). The latter created a map of the magnetic field based on MO 2 measurements. Only the median value in each $1 \times 1^{\circ}$ bin was retained. Global 3 modeling approaches, based on Spherical Harmonics Analysis (SHA) (Cain et 4 al., 2003; Arkani-Hamed, 2004) or Equivalent Source Dipoles (ESD) (Purucker 5 et al., 2000; Langlais et al., 2004) have also been employed. The SHA is com-6 monly used to model the Earth's magnetic field (Gauss, 1839), in particular 7 its large core field. The ESD is generally used when considering magnetic field 8 of lithospheric origin (Langel and Hinze, 1998). 9

Both techniques provide similar description of the magnetic field at satel-10 lite altitude: the Martian magnetic anomalies are hemispherically distributed. 11 The largest anomalies are one or two orders of magnitude larger than what is 12 thought to be the terrestrial remanent magnetic field, reaching some 200 nT at 13 400 km altitude (Connerney *et al.*, 2004). This is to be compared to some 20 14 nT on the Earth at similar altitudes (Maus *et al.*, 2002). Both SHA and ESD 15 techniques agree on the magnitude of the magnetic field at the surface level: 16 it may well exceed 10000 nT (Langlais et al., 2004). Measurable magnetic 17 fields (at satellite altitude) are mostly found South of the crustal dichotomy, a 18 boundary of enigmatic origin between the Northern lowlands and the Southern 19 highlands (Zuber, 2001). Mars also possesses large areas where the magnetic 20 field is weak, or unmeasurable. This is the case over the largest impact craters 21 (Hellas, Argyre, Isidis), and also above the largest volcanoes (Tharsis, Ely-22 sium, Olympus). A simple scenario can explain these observations: an Earth-23 like Martian dynamo was active during the first stages of the planet evolution; 24 it stopped at a certain epoch, and was not active when destructive events (im-25 pacts, volcanic eruptions) took place; the remanent magnetic field, if any, was 26

thus locally erased by thermal or shock demagnetization (Hood *et al.*, 2003).
Another scenario, in which a dynamo started after these catastrophic events
(Schubert *et al.*, 2000), seems unlikely, as the strongest magnetic anomalies
lies below terranes that seem to be older than the impacts and the volcanoes
(Frey, 2004).

Global models of the magnetization have also been developed, either jointly 6 with models of the magnetic fields (Langlais et al., 2004), or as magnetiza-7 tion only models (Arkani-Hamed, 2002; Whaler and Purucker, 2005). These 8 models eliminate non-uniqueness either through the norm that they minimize 9 (Langlais et al., 2004; Whaler and Purucker, 2005) or through the specifica-10 tion of a dipolar field and paleopole location (Arkani-Hamed, 2002). Albeit 11 non unique, the derived magnetization distributions described above may be 12 seen as what could be the direction and the contrasts of the actual magne-13 tization of the Martian lithosphere. Parker (2003) estimated what would be 14 the minimum magnetization capable of producing the high intensity magnetic 15 field observed in the South hemisphere. Assuming a 50-km thick layer, the 16 magnetization must be at least 4.76 A/m. This is very consistent with the 17 model of (Connerney et al., 1999), who reported a +/- 20 A/m for 30-km 18 thick contiguous magnetized plates. Langlais et al. (2004) gave a +/- 12 A/m 19 range for a 40-km thick layer, while Nimmo and Gilmore (2001) found $\simeq 40$ 20 A/m for a 10-km thick layer. 21

Several studies have attempted to delineate paleopoles. One approach is to use 'isolated' magnetic anomalies, and apply forward modeling techniques. An unique solution is not guaranteed in this approach, and interactions with adjacent anomalies are handled subjectively. Hood and Zakharian (2001) modeled two isolated magnetic anomalies, located near the North Pole. The associ-

ated paleopole they computed is located near 45°N, 225°E. Using 10 isolated 1 magnetic anomalies, Arkani-Hamed (2001) found that 7 out of 10 paleopoles 2 formed a cluster around 25°N, 230°E. In another study, (Arkani-Hamed and 3 Boutin, 2004) found a dual clustering of paleopoles, based on the analysis 4 of nine magnetic anomalies. All these studies lead to two observations: none 5 of the computed paleopoles coincide with the actual rotation axis, and con-6 tiguous paleopoles may be of reversed polarity. This can be explained by a 7 reversing Martian dynamo, plus polar wander between the present and the 8 epoch when the magnetized bodies acquired their magnetization. 9

These paleopoles are based on local approaches. Global approaches have placed 10 these local results in context, and can be used to assess some measure of their 11 uncertainty. Langlais et al. (2004) interpolated magnetization directions be-12 tween the equivalent source dipoles so that the sources would be located at the 13 same locations as those described by Arkani-Hamed (2001). The inclinations 14 they found are within 10° of the ones given by (Arkani-Hamed, 2001), in seven 15 out of ten cases. The three remaining are different by less than 30° . Whaler 16 and Purucker (2005) found that 5 out of 10 paleopoles fell within 30° , and 17 that the average separation was 35° . 18

¹⁹ It is however difficult to interpret these results. The location of the paleopole ²⁰ strongly relies on the geometry and the location of the magnetized source, ²¹ as well as on the data availability and the method used. Arkani-Hamed and ²² Boutin (2004) compared their results to previous studies in their Table 1. For ²³ instance, their anomaly 5 gives two distinct paleopoles, although its prismatic ²⁴ source is located at almost the same location. Unique solution does not exist, ²⁵ unless the location of the source can be *a priori* set.

At least one volcano is not correlated with a null magnetic field. This is Apol-1 linaris Patera (9.3° S, 174.4° E). This volcanic edifice rises about 5 km above 2 the surrounding terranes. Its shape is a 200 km-wide dome, with a 75 km-3 wide caldera on its summit (Figure 1a). Its history consists of at least two 4 distinct phases: a first one explosive, forming the main edifice; and a second 5 one effusive, forming the southern flows (Robinson et al., 1993). According to 6 recent crater counts, its active period ended early in the Martian history at 7 about 3.71 Ga ago (Werner, 2005). This volcano is also quite isolated. In con-8 trast with other volcanoes, it does not lie along a fault zone, nor it is aligned 9 with other volcanoes. This volcano presents a strong gravity anomaly, as re-10 vealed by the model of Lemoine *et al.* (2001). A map of the gravity anomaly is 11 shown on Figure 1b. The location of the maximum gravity anomaly is -8.75° S. 12 174.5°E, which is almost the location of the top of the Patera. 13

14 Figure 1

15

In this paper, we present a summary of the measurements acquired near the location of this volcano. The considered area is between 160 and 190° East longitude, and -25 and +5° North latitude. We then describe the modeling method. We finally present the results of the modeling, and discuss their implications in terms of paleopole locations.

21 2 Magnetic Measurements

Mars Global Surveyor was launched on November 7th, 1996, and reached Mars
orbit on September 11th, 1997. We herein briefly recall the four mission phases.

A review of the mission characteristics and main results can be found in Albee 1 et al. (2001). The first AeroBraking (AB-1) phase was followed by a Science 2 Phasing Orbit (SPO), then a second AeroBraking (AB-2) phase, and finally 3 the Mapping Orbit (MO) cycles. Because of this configuration measurements 4 were acquired at both low (down to 90 km) and high (near 400 km) altitudes. 5 There is thus a dual altitude coverage, even if the lowest one is far from being 6 complete. In this study we considered measurements from the AB-1 phase 7 below 250-km altitude (between days 322 of 1997 and day 22 of 1998), as well 8 as night-side measurements from the MO phase (between days 67 of 1999 and 9 262 of 2001). Measurements are shown on Figures 2 and 3 for the AB-1 and 10 MO phases, respectively. 11

12 Figure 2

13

14 Figure 3

15

It is crucial to test both the validity and the stability of the magnetic measurements because the relationship between the solution and the observations is not unique. Given the large amount of measurements, it is possible to keep only a fraction of them, without altering the quality of the geographical coverage.

When dealing with terrestrial measurements, the first step is to select the quietest measurements (Langel and Hinze, 1998), using routinely computed external activity indices. On Mars, there are no such activity indices. This is the reason why we use a different approach: we compute statistical indices associated with time variations observed for a given location.

Such statistics are computed only for the MO measurements. Measurements 2 are first sorted onto a $0.5^{\circ} \times 0.5^{\circ}$ grid. Due to the orbital parameters the 3 altitude remains almost constant over a particular cell, with a maximum am-4 plitude equal to 7.5 km. Second we look for the median value $C_m(c)$ among 5 the N_c observations of each component C in each cell c. The median value is 6 preferred to the mean one as it is less sensitive to possible outliers. Third, a 7 daily index $\sigma_C(d)$ is computed, characterizing the mean perturbation to the 8 median value for each component, based on the N_d measurements acquired 9 for a given day d: 10

11
$$\sigma_C^2(t) = \frac{1}{N_d - 1} \sum_{i=1}^{N_d} (C_i(c, d) - C_m(c))^2$$
(1)

where $C_i(c, d)$ is the i^{th} measurement acquired on day d, located in cell c. Indices are computed only for days with more than 100 measurements over the area of interest.

Using this index, measurements are selected on a daily basis, rejecting those 15 acquired on days when the index $\sigma_C(d)$ is higher than a pre-defined value. 16 This value is set to 4 nT, close to the 3 nT estimated accuracy of the MGS 17 measurements (Acuña *et al.*, 1999). For a particular day, all three σ_{Br} , $\sigma_{B\theta}$ 18 and $\sigma_{B\phi}$ have to be lower than 4 nT. The resulting, selected, dataset contains 19 119198 magnetic vectors. This dataset covers 211 days, which corresponds 20 to one-third of the considered time period. The geographical coverage of the 21 dataset is checked. There are between 65 and 395 measurements for each $1 \times 1^{\circ}$ 22 bin. 23

²⁴ MO magnetic measurements are plotted on Figure 3. On these maps a clear ¹ magnetic signature is found. Both the B_r and B_{ϕ} components (Figures 3a and ² 3c) show a change of polarity above the Patera. This change of polarity is ³ aligned on a NW-SE direction. The correlation between the B_{θ} component ⁴ (Figure 3b) and the volcano is less evident, even if a (small) local extrema can ⁵ be noticed about 1 or 2° East of the volcano. However, it has to be noted that ⁶ the magnetic properties of the area are likely to be complex. Larger anomalies ⁷ are present on the eastern and southern boundaries as shown by the *B* map ⁸ (Figure 3d).

The geographical coverage is far from being complete for the AB-1 data (Figure 9 2). Only measurements made below 250 km, without any local time consid-10 eration, are selected. There are only 3597 measurements, which fill 535 out 11 of 900 cells on a $1^{\circ} \times 1^{\circ}$ grid. B_r (Figure 2a) changes its polarity above the 12 volcano, on a NW-SE axis. B_{θ} (Figure 2b) is negative all around the volcano, 13 while B_{ϕ} (Figure 2c) is positive NE and negative SW of the Patera. There is 14 a local maximum of the magnetic field above the volcano (Figure 2d). These 15 magnetic features are very similar to those measured during the MO phase. 16

¹⁷ 3 Input parameters and modeling approach

Measurements made at different altitudes seem to support a magnetic anomaly 18 that would be associated with a body located below or near the caldera of the 19 Apollinaris Patera. This body could be of various origins, including a magma 20 chamber (Kiefer, 2003). Several modeling approaches could be used, based on 21 different level of complexity for the sources. In the following, we will use a very 22 simple approach, in which the magnetized body (ies) is (are) represented by 23 one (or more) equivalent source dipoles (Purucker et al., 1996). Other methods 24 could have been considered, using vertical prisms, or uniformly magnetized 1

 $_{2}$ spheres. But these methods require the geometric shape to be *a priori* set or

₃ known.

The method we use does not require any geometric information but the loca-4 tion of the point dipole (latitude, longitude and depth). We assume an *a priori* 5 depth of 20 km, following the results of Langlais *et al.* (2004). We assume a 6 km-thick magnetized layer, similar to the one used in previous studies (Pu-40 7 rucker et al., 2000; Langlais et al., 2004). The assumed thickness does not affect 8 the results: only the vertically integrated magnetization is actually computed. 9 As a consequence the resulting magnetization is inversely proportional to the 10 assumed thickness. However, we are well aware that this might correspond or 11 not to the depth of the Curie isotherm. This is nevertheless comparable to the 12 mean crustal thickness ($\simeq 50$ km, Smith and Zuber (2002)) 13

We use several equivalent source dipoles, located homogeneously around the 14 volcano. When dealing with ESD it is important to use a regular mesh (Coving-15 ton, 1993). Since we are looking at a local problem, located around a spherical 16 edifice, we choose to use a hexagonal mesh. Each equivalent source dipole is 17 located at the center of a hexagon, all hexagons being contiguous. The mean 18 distance between the dipoles is chosen so that it corresponds to the minimum 19 altitude of the data, 110 km above the region of interest. Several meshes are 20 defined, by increasing the number of sources (corresponding to larger areas). 21 Meshes are made of 7, 19, 37, 61, 91, 127 or 169 equidistant sources, respec-22 tively. For a given dipole location, only the measurements made within 1500 23 km of it are used to derive the magnetization components. The 169-dipole 24 mesh is shown on Figure 4. 25

¹ Figure 4

We use a conjugate gradient iterative technique to solve the inverse problem, 3 as done previously in Langlais *et al.* (2004). The relationship between mag-4 netic anomalies and magnetization distribution is non unique. One source of 5 error consists in magnetic annihilators (Parker, 1977), that produce no ex-6 ternal field. As a consequence, two different magnetization distributions can 7 produce almost identical magnetic anomalies. This well known feature is en-8 hanced in this study. We consider a very limited area. The further away from ç the volcano the dipoles are, the more they are to be influenced by other mag-10 netic anomalies. It is thus very important to define criteria by which a simple 11 solution consistent with the observations can be defined. First, the evolution 12 of the root mean square differences between the measurements and the model 13 predictions are examined between successive iterations. This is done over a 14 limited area, in order to avoid edge effects. Second, the convergence of the 15 solution is investigated, by comparing the changes between magnetic field 16 predictions and magnetization distribution. Third, the evolution of the root 17 mean square value of the magnetization intensity (regardless of the direction) 18 is compared to the evolution of root mean square residuals. This scheme allows 19 us to retain only one solution for a given dipole mesh. 20

21 4 Results

We start with the single dipole case. We determine what is the most likely location of the paleopole associated with this single-dipole solution. We then consider multiple-dipole cases, first using the paleopole to impose magnetization directions, and second without any assumption on the magnetization 4 directions.

5 4.1 Using a single dipole

We first test the coherency of the low-altitude, sparse AB-1 measurements 6 with the high-altitude, homogeneously located MO measurements. A single 7 dipole is located at -8.75° S, 174.50° E, the position of the maximum grav-8 ity anomaly. We first look for the dipole directions and magnetization, using 9 either the AB-1 or MO measurements. Both approaches give similar results. 10 The dipole inclination is -8.41° and 2.54° for the AB- and MO-based mod-11 els, respectively, while the declination is found to be -157.40° and -157.81° . 12 Associated paleopoles are located -64.00°N, 55.44°E and -66.68°N, 67.03°E, 13 respectively. 14

The magnetization directions and intensity are then solved for using AB and 15 MO measurements together. Several dipole locations are tested, on a $1/4 \times 1/4^{\circ}$ 16 grid of a $1 \times 1^{\circ}$ side square, centered on the volcano. For each location, the 17 dipole is assumed to be located 20 km below the mean surface, following 18 the conclusions of Langlais *et al.* (2004). All 25 models give similar results 19 in terms of inclination and declination. The inclination ranges from -13.72 to 20 4.87°, while the declination ranges from -160.22 to -155.90°. The mean position 21 of the paleopoles is 65.06° S, 59.44° E. 22

It is unfortunately impossible to estimate what is the exact location of the magnetic source. Rms differences between measurements and predictions based on a particular dipole are indeed biased by the poorer geographical distribution of the AB measurements. Less measurements lead to apparently better fit to the data. However, assuming that the magnetic anomaly can be modeled
by a single dipole, located on or near Apollinaris Patera, then its magnetized
vector is almost horizontal, pointing towards the South.

7 4.2 Using more than one equivalent source dipole

When considering magnetic measurements acquired on or above a topographic 8 elevation on the Earth, we generally refer to the seamount problem (Vacquier, 9 1972; Parker et al., 1987). This approach usually relies on marine survey mea-10 surements, acquired over small-scale structures (a few tens of kilometers). 11 The simplest case is associated with uniform magnetization. This is appropri-12 ate when dealing with small edifices, that were put in place relatively quickly. 13 For recent structures, the magnetization direction can be approximated, and 14 aligned onto the main magnetic field. In this case, a uniform magnetization 15 over the whole volume is assumed. Only the magnetization moment is solved 16 for. 17

For more complex or older edifices, one has to consider possible non uniform 18 magnetization (Parker et al., 1987). This can be due for instance to the evo-19 lution of the magnetic field between initial and final eruptive events, or to an 20 evolution of the magnetic mineralogy. It is generally assumed that the dura-21 tion of the seamount volcanism is long enough to average out the effects of the 22 secular variation. But it can also be long enough to experience one or more 23 field reversals. In this case, and assuming that the magnetic axis remained 24 similar, two or more opposite magnetic layers will produce less intense mag-25 netic anomalies, by canceling one each other. In this case, only the apparent 1 magnetization moment is solved for. The worst scenario would correspond to almost equally thick magnetic layers, resulting in an almost null magnetization. Exactly equally thick layers would indeed not cancel each others, the
upper one being closer to the sources than the bottom one.

The period over which Apollinaris Patera was active likely extends 10^7 years 6 (Robinson *et al.*, 1993). Assuming there was an internal magnetic field at 7 this time (similar to the terrestrial one), its rapid fluctuations can safely be 8 ignored during this long interval, and only the mean direction of the dipolar 9 field can be assumed to be constant. However a field reversal can not be 10 excluded. Similarly, a magnetic axis wander can not be ruled out. In order 11 to investigate such possibilities, two cases are studied. First, we consider an 12 uniform magnetization for the whole area. Second, we let the magnetization 13 direction vary around the volcano. 14

15 4.2.1 Uniform magnetization case

First we consider the uniform magnetization case. The direction of the magnetization is assumed to be fixed with respect on a mean paleopole position. Since both inclination and declination previously computed are very consistent, whatever the altitude of the used measurements (AB or MO), or the exact location of the dipole (inside a 1° square around the volcano), the considered paleopole is the one computed using the single dipole solution, leading to (65.06°S, 59.44°E).

²³ Corresponding input declination and inclination for the 7-dipole grid range be²⁴ tween -157.88 and -157.20° and between -8.03 and -0.78°, respectively. For the
²⁵ 169-dipole grid, inclination ranges between -28.08 and 20.40° while declination
¹ ranges between -160.44 and -155.41°.

The rms residuals between measurements and model prediction decrease as the 2 iteration number increase. They also decrease as more sources are used. The 3 value of the residuals is however controlled by the intense magnetic anomalies located to the SW and to the East of the area (see Figure 4). This is why 5 we consider the evolution of the residuals over a limited area, surrounding the 6 volcano. Similarly the magnetization of the outer sources is influenced by these 7 intense anomalies, in addition to edge effects. Thus the magnetization of these 8 dipoles can not be considered as reliable. In the following, rms residuals will g refer to residuals computed within 2.5° of the volcano for the MO measure-10 ments. AB rms residuals are meaningless as less than 100 measurements are 11 located within 2.5° of the volcano. We however visually check the residuals. 12

13 Figure 5

14

The first step is to select a model for each dipole mesh. In each case we stopped 15 the iterations when the residuals no longer decreased significantly when com-16 pared to the increase of the rms magnetization. Then the evolution of the rms 17 residuals is compared to the number of sources. A minimum is reached for 127 18 sources, or 6 concentric hexagons (Figure 5). The final model corresponds to 19 the 10th iteration. Locally, rms residuals are as low as 3.16 nT. The difference 20 between 127- and 169-dipole mesh is very small. Associated magnetic field 21 predictions are show on Figure 6 and 7 for the AB and MO measurements, 22 respectively. Predictions are very close to the actual measurements. In partic-23 ular, the change of sign of the B_r component is well reproduced. The poorest 24 predictions are associated with the B_{ϕ} component, where external fields are 25 probably largest.

2 Figure 6

3

4 Figure 7

5

We show on Figure 8 the magnetization distribution associated with the 127-6 dipole mesh solution. Both positive and negative magnetizations are plotted. 7 A negative value is associated with a magnetization acquired in a reversed 8 field (assuming that the central one was acquired in a normal field). It is 9 interesting to note that the magnetization does not present any change of sign 10 above and around the volcano. This is very important, as this means that the 11 magnetization associated with the volcano has a single polarity. The behavior 12 of the more remote sources (starting with the 3rd hexagon) is controlled by 13 edge effects. The magnetization of the 7 central sources range between 0.2 and 14 10.1 A/m (for a 40-km thick layer). These values are comparable to the ones 15 given in previous studies (Parker, 2003; Langlais et al., 2004). 16

17 Figure 8

18

19 4.2.2 Non uniform magnetization case

In order to *a posteriori* check this result, we also study the non uniform magnetization case. We do not make any assumption on the direction of the magnetization. We do not impose any spatial coherency. This corresponds to solving for (M, D, I). We apply the same procedure as for the uniform magnetization case. We first look for the best solution is terms of local rms residuals for each

dipole mesh, and then determine what appears to be the best dipole mesh. 2 The 7-dipole mesh leads to lower rms residuals than the 19-dipole mesh (Fig-3 ure 9). However, this solution is not satisfactory in terms of predicting the AB 4 measurements. We disregarded it, and retain the 61-dipole solution. It corre-5 sponds to the 10th iteration. The magnetic field (local) predictions associated 6 with this model are very similar to the ones by the coherent 127-dipole mesh, 7 even if this solution offers a slightly better fit (2.81 nT). We plot on Figure 10 8 the magnetization components M, I and D. Again, negative values for M corg respond to magnetizations acquired in a reversed field when compared to the 10 one of the central dipole. A paleopole location is computed for each equivalent 11 source dipole. We show on Figure 11 the location of the paleopoles associated 12 with the 7 closest dipoles. Their spatial distribution shows a clustering, around 13 the South Pole. The mean paleopole position is (87.8°S, 99.2°E). 14

15 Figure 9

16

17 Figure 10

18

¹⁹ Figure 11

20

This mean location was checked using other dipole meshes. We looked for the mean paleopole location associated with the 7 closest sources of the best solution. For 37 and more dipoles, the mean paleopole is always South of 80°S.

² This clustering of the paleopoles confirms the results of the uniform magneti ³ zation case. The magnetic field measured above Apollinaris Patera is coherent

with a horizontal magnetization pointing South. If one assumes that this magnetization was acquired at the time when the volcano was set into place, then
this would mean that little or no polar wander has occurred since this epoch.

7 5 Discussion

In this paper, we examine a magnetic anomaly associated with a relatively 8 large and isolated volcanic edifice. This is the first study in which a magnetic 9 anomaly is clearly associated with a geologic feature, other than the negative 10 association with impact features first recognized by Acuña et al. (1999). There 11 is a coincident gravity anomaly, which may originate as a high-density magma 12 chamber under the volcano (Kiefer, 2003). By virtue of the density contrast 13 with its surroundings, we infer that this magma chamber is iron-rich. It is 14 very likely that this iron-rich material contributes significantly to the mag-15 netic anomaly. This association allows for a more accurate determination of a 16 paleomagnetic pole (Parker *et al.*, 1987) than previously possible on Mars. 17

Both low- and high-altitude measurements are considered. Given the numerous 18 MO measurements, it is possible to make a selection with respect to external 19 perturbations, but still consistent with complete geographical coverage. We 20 estimate a daily activity index, and kept only measurements acquired dur-21 ing the quietest days. External fields were also modeled and removed. The 22 results did not change significantly. We also simulated a central demagneti-23 zation, associated to the latest stages of the volcanic activity. Taking a Curie 24 temperature of 500°C or so, a lava temperature of 1200°C and a thermal gra-25 dient of 30°/km, then an area of 23 km (radius) would be affected. Taking a 1 conservative approach corresponds to remove the central dipole. Magnetiza-2

 $_{\scriptscriptstyle 3}$ tion distribution, magnetic field predictions and paleopole clustering do not

4 change.

Low- and high-altitude measurements are coherent and show similar patterns. 5 The inverse problem is formulated using an equivalent source dipole approach, 6 which is a simple but effective space domain technique. Two cases are investi-7 gated. First, we assume an *a priori* uniform magnetization direction, fixed with 8 respect to a magnetic paleopole. The location of this paleopole is estimated 9 by fitting the measurements with only one dipole located below the volcano. 10 The best solution is made of 127 sources, located homogeneously around the 11 volcano. The magnetization signature of the closest sources is spatially coher-12 ent. No field reversal is recorded by the volcanic edifice. This does not mean 13 that the Martian dynamo did not experience any reversals. 14

Second we do not assume any *a priori* magnetization directions. In this case the 15 best solution consists of 61 dipoles. The directions we find do not differ much 16 from the uniform case. Paleopoles associated with the closest sources cluster 17 around (87.8°S, 99.2°E). We apply to this results paleomagnetic statistics. 18 Paleomagnetic studies typically rely on tens of samples collected at the same 19 location. The confidence of the results is usually described by the α_{95} param-20 eter. It corresponds to the 95% confidence interval (Butler, 1992). Here we 21 have to deal with 7 directions, located at different locations. We first correct 22 the magnetization directions for the location differences. We find a $\alpha 95$ equal 23 to 18.98°. For a terrestrial study, this would be considered as a high value. 24 But we have to deal here with a very large edifice. We can compare it to larger 25 scale studies on the Earth. Typical dispersion of paleopoles associated with 26 equatorial sources is of the order of 13° (Merrill *et al.*, 1996). This is very close 1 to what we observe in this study. 2

We compare this result to previous studies. The magnetization model of 3 Whaler and Purucker (2005) predicts a substantial magnetization anomaly 4 (2 A/m over a 40 km thick crust) almost coincident with the gravity anomaly. 5 The paleomagnetic pole associated with a source at the location of the maxi-6 mum gravity anomaly would be located at 79.3°S, 85.8°E. The magnetization 7 model of Langlais et al. (2004) predicts a magnetization anomaly of compara-8 ble extent and magnitude, and the paleomagnetic pole evaluated at a source 9 interpolated at the maximum gravity anomaly would be located at 66.51°S. 10 31.62°E. 11

Based on crater counts, Apollinaris Patera seems to be younger than Hellas and Argyre impact craters. However, there exist other martian volcanoes which activity has been intermittent over billions of years. The observed magnetic anomaly could signify that the Patera is actually older than the oldest visible surface.

This new result however differs from studies based on isolated magnetic anoma-17 lies (Frawley and Taylor, 2004; Arkani-Hamed and Boutin, 2004). It is possible 18 to reconciliate these different results: the Martian dynamo likely experienced a 19 complex history, including field reversals. Polar wander is also possible, linked 20 to the rise of the Tharsis bulge (Sprenke et al., 2005). Another volcano with 21 a gravity (Kiefer, 2003) and magnetic (Whaler and Purucker, 2005) signature 1 is Tyrrhena Patera, located NE of Hellas. These signatures are broader, and 2 more complicated, than those at Apollinaris Patera, as befitting a much more 3 extensive volcanic complex. It remains to be seen whether reliable paleomag-4 netic pole information can be extracted from this volcano, and if it confirms 5 the present study. 6

7 Acknowledgements

⁸ Authors wish to thank an anonymous reviewer for his constructive critiques.
⁹ Part of this study was performed while B.L. was supported by a NAS/NRC
¹⁰ postdoctoral fellowship and while M.E.P. was in residence as Visiting Professor
¹¹ at the University of Nantes, France. This research benefited from the support
¹² of the European Community's Improving Human Potential Programme under
¹³ contract RTN2-2001-00414, MAGE.

14 References

- ¹⁵ Acuña, M.H., Connerney, J.E.P., Ness, N.F., Lin, R.P., Mitchell, D., Carlson,
- ¹⁶ C.W., McFadden, J., Anderson, K.A., Rème, H., Mazelle, C., Vignes, D.,
- Wasilewski, P., and Cloutier, P., 1999. Global distribution of crustal magnetization discovered by the Mars Global Surveyor MAG/ER experiment.
 Science, 284, 790-793.
- 19 Science, 201, 150 155.
- ²⁰ Albee, A.L., Arvidson, R.E., Palluconi, F., and Thorpe, T., 2001. Overview of
- the Mars Global Surveyor Mission. J. Geophys. Res., 106, 23291-23316.
- ²² Arkani-Hamed, J., 2001. Paleomagnetic pole positions and pole reversals of
- ²³ Mars. Geophys. Res. Lett., 28, 3409-3412.
- ²⁴ Arkani-Hamed, J., 2002. Magnetization of the Martian crust. J. Geophys. Res.,
- ²⁵ 107,doi:10.1029/2001JE001496.
- ²⁶ Arkani-Hamed, J.,2004. A coherent model of the crustal magnetic field of
- ²⁷ Mars. J. Geophys. Res., 109, doi:10.1029/2004JE002265.
- ¹ Arkani-Hamed, J., and Boutin, D., 2004. Paleomagnetic poles of Mars: Revis-
- ² ited. J. Geophys. Res., 109, doi: 10.1029/2003JE002229.

- ³ Butler, R.F., 1992. Paleomagnetism. Blackwell Sci., Malden, Mass.
- ⁴ Cain, J.C., Ferguson, B.B., and Mozoni, D., 2003. An n=90 internal poten-
- tial function of the Martian crustal magnetic field. J. Geophys. Res., 108,
 doi:10.1029/2000JE001487.
- 7 Connerney, J.E.P., Acuña, M.H, Wasilewski, P.J., Ness, N.F., Rème, H.,
- ⁸ Mazelle, C., Vignes, D., Lin, R.P., Mitchell, D., and Cloutier, P., 1999.
- ⁹ Magnetic lineations in the ancient crust of Mars. Science, 284, 794-798.
- ¹⁰ Connerney, J.E.P., Acuña, M.H., Wasilewski, P.J., Kletetschka, G., Ness, N.F.,
- Rème, H., Lin, R.P., and Mitchell, D., 2001. The Global Magnetic Field
- of Mars and Implications for Crustal Evolution, Geophys. Res. Lett., 28,
 doi:10.1029/2001GL013619.
- ¹⁴ Connerney, J.E.P., Ness, N.F., Spohn, T., and Schubert, G., 2004. Mars
 ¹⁵ Crustal Magnetism. Space Sci. Rev., 111, 1-32.
- ¹⁶ Covington, J., 1993. Improvement of equivalent source inversion technique
 ¹⁷ with a more symmetric dipole distribution model. Phys. Earth and Plan.

- Frawley, J.J., Taylor, P.T., 2004. Paleo-pole positions from martian magnetic
 anomaly data. Icarus 172, 316-327.
- ²¹ Frey, H.V., 2004. A timescale for major events in early Mars crustal evolution.
- Lunar and Planetary Science Conf. XXXV, Abstract 1382.
- ²³ Gauss, C.F., 1839. Allgemeine Theorie des Erdmagnetismus. In Resultate aus
- den Beobachtungen des magnetischen Verein im Jahre 1838, 1-52, Leipzig,
 Göttingen Magn. Ver., Germany.
- ²⁶ Hood, L.L., and Zakharian, A., 2001. Mapping and modeling of magnetic
- anomalies in the Northern polar region of Mars. J. Geophys. Res., 106,
- ¹ 14601-14619.
- ² Hood, L.L., Richmond, N.C., Pierazzo, E., and Rochette, P., 2003. Distribution

¹⁸ Int., 76, 199-208.

of crustal magnetic fields on Mars: Shock effects of basin forming impacts.

⁴ Geophys. Res. Lett., 30, doi:10.1029/2002GL016657.

5 Kiefer, W.S., 2003. Gravity evidence for extinct magma chambers on Mars:

- ⁶ Tyrrhena Patera and Hadriaca Patera. Lunar and Planetary Science Conf.
- 7 XXXIV, Abstract 1234.
- Langel, R.A., and Hinze, W.J., 1998. The magnetic field of the earth's lithosphere, the satellite perspective. Cambridge University Press, 430 pp.
- ¹⁰ Langlais, B., Purucker, M.E., and Mandea, M., 2004. The crustal magnetic
- ¹¹ field of Mars. J. Geophys. Res., 109, doi:10.1029/2003JE002058.
- ¹² Lemoine, F.J., Smith, D.E., Rowlands, D.D., Zuber, M.T., Neumann, G.A.,
- ¹³ Chinn, D.S., and Pavlis, D.E., 2001. An improved solution of the gravity
- field of Mars (GMM-2B) from Mars Global Surveyor. J. Geophys. Res., 106,
 23359-23376.
- Maus, S., Rother, M., Holme, R., Lühr, H., Olsen, N., and Haak, V., 2002.
 First scalar magnetic anomaly map from CHAMP satellite data indicates
 weak lithospheric field. Geophys. Res. Lett., 29, doi:10.1029/2001GL013685.
 Melosh, H.J., 1980. Tectonic patterns on a reoriented planet-Mars. Icarus, 44, 745-751.
- Merril, R.T., McElhinny, M.W., and McFadden, P.L., 1996. The Magnetic
 Field of the Earth. Int. Geophys. Ser., vol. 63, 531 pp., Academic, San
 Diego, Calif..
- Nimmo, F., and Gilmore, M.S., 2001. Constraints on the depth of magnetized
 crust on Mars from impact craters. J. Geophys. Res., 106, 12315-12323.
- Parker, R.L., 1977. Understanding Inverse Theory. Annu. Rev. Earth Planet.
 Sci., 5, 35-64.
- ¹ Parker, R.L., Shure, L., and Hildebrand, J.A, 1987. The application of inverse

- ² theory to seamount magnetism. Rev. Geophys., 25, 17-40.
- Parker, R.L., 2003. Ideal bodies for Mars magnetics. J. Geophys. Res., 108,
 doi:10.1029/2001JE001760.
- ⁵ Purucker, M.E., Sabaka, T.J., and Langel, R.A., 1996. Conjugate gradient
 ⁶ analysis: a new tool for studying satellite magnetic data sets. Geophys. Res.
 ⁷ Lett., 23, 507-510.
- ⁸ Purucker, M.E., Ravat, D., Frey, H., Voorhies, C., Sabaka, T., and Acuña, M.,
- ⁹ 2000. An altitude-normalized magnetic map of Mars and its interpretation.
- ¹⁰ Geophys. Res. Lett., 27, 2449-2452.
- ¹¹ Robinson, M.S., Mouginis-Mark, P.J., Zimbelman, J.R., Wu, S.S.C., Ablin,
- 1 K.K., and Howington-Kraus, A.E., 1993. Chronology, eruption duration,
- ² and atmospheric contribution of the martian volcano Apollinaris Patera.
- ³ Icarus, 104, 301-323.
- ⁴ Schubert, G., Russel, C.T., and Moore, W.B., 2000. Timing of the Martian
 ⁵ dynamo. Nature, 408, 666-667.
- ⁶ Smith, D.E., and Zuber, M.T, 2002. The crustal thickness of Mars: accuracy
- ⁷ and resolution. Lunar Planet. Sci. Conf., XXXIII, Abstract 1893.
- Sprenke, K.F., Baker, L.L., and Williams, A.F., 2005. Polar wander on Mars:
 Evidence in the geoid. Icarus, 174, 486-489.
- ¹⁰ Stevenson, D.J., 2001. Mars' core and magnetism. Nature, 412, 214-219.
- ¹¹ Vacquier, V., 1972. Geomagnetism in Marine Geology. Elsevier Publishing,
 ¹² Amsterdam, 185pp.
- ¹³ Werner, S.C., 2005. Major Aspects of the Chronostratigraphy and Geologic
- ¹⁴ Evolutionary History of Mars. PhD thesis, Freie Universität Berlin.
- ¹⁵ Whaler, K.A., and Purucker, M.E., 2005. A spatially continuous magnetization
- ¹⁶ model for Mars. J. Geophys. Res., 110, doi:10.1029/2004JE002393.

 $_{\rm 17}$ $\,$ Zuber, M.T., 2001. The crust and mantle of Mars. Nature, 412, 220-227.

Figure 1 - (a) Topography around Apollinaris Patera, and (b) associated gravity anomaly, from Lemoine *et al.* (2001).

20

1

Figure 2 - Magnetic measurements acquired near Apollinaris Patera during the AB-1 phase below 250 km altitude: (a) B_r ; (b) B_θ ; (c) B_ϕ ; (d) B. No altitude correction is applied. Orbits are superposed onto a shaded relief.

² Figure 3 - Magnetic measurements acquired near Apollinaris Patera during ³ the MO phase between 370 and 395 km altitude: (a) B_r ; (b) B_{θ} ; (c) B_{ϕ} ; (d) ⁴ *B*. Iso-contours are plotted every 10 nT. Dashed lines correspond to negative ⁵ values. Orbits are superposed onto a shaded relief.

6

⁷ Figure 4 - Hexagonal dipole mesh. There are 169 sources, the mean distance
⁸ is 116 km.

9

Figure 5 - Rms residuals between MO measurements and coherent-model predictions with respect to the number of sources. Only measurements within
2.5° of the volcano are taken into account.

13

Figure 6 - Magnetic field predictions associated with the 127-dipole coherent model: (a) B_r ; (b) B_θ ; (c) B_ϕ ; (d) B. Predictions are made at AB-1 measurement locations.

17

Figure 7 - Magnetic field predictions associated with the 127-dipole coherent model: (a) B_r ; (b) B_{θ} ; (c) B_{ϕ} ; (d) B. Predictions are made at MO measurement locations.

21

Figure 8 - Magnetization distribution associated with the 127-dipole coherent
model. An a priori paleopole is assumed. Negative magnetizations correspond
to anomalies acquired in a reversed field.

585

Figure 9 - Rms residuals between MO measurements and model predictions with respect to the number of sources. No a priori assumptions on magnetization directions. Only measurements within 2.5° of the volcano are taken into account.

590

Figure 10 - Magnetization distribution associated with the 61-dipole mesh: (a)
M; (b) I; (c) D. No a priori assumption on the paleopole location. Negative
magnetizations correspond to anomalies acquired in a reversed field.

594

Figure 11 - Paleopole locations associated with the 61-dipole mesh. Only the closest dipoles are taken into account. Black diamond corresponds to the central dipole. White diamonds correspond to the first hexagon. White star corresponds to the paleopole associated with the 127-dipole coherent model.

599

Fig. 1.

Fig. 2.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Fig. 10.

Fig. 11.