

A magnetic perspective on the crust of the Moon and terrestrial planets

Michael Purucker

Raytheon @ Planetary Geodynamics Lab, GSFC/NASA

17 Oct 2008

Outline

Relation of iron to magnetization, and magnetic fields

Magnetic fields of the Earth: Beginnings
Surprises at Mars

Age spots, or youthful markings, on the Moon

Mercury: In the shadow of the Sun

Return to Earth: Large igneous provinces, rifts, subduction zones, and diffuse plate boundary zones

Conclusions: New missions and experiments

Magnetic fields of the Moon and terrestrial planets

at 1330 LT on 5 Jan 2002

Iron and
Magnetization in
the crust of the
Moon and
Terrestrial
planets

World Magnetic Anomaly Map (2007)

Magnetic fields at the planet Mars as measured by MGS

Purucker et al., 2000

Magnetic fields over large Martian impact basins Hellas, and Isidis

Magnitude scale

Purucker, 2008

Longitude

Purucker et al., in review

Does Mercury have a crustal magnetic field?

Magnetic fields of the Moon and terrestrial planets

at 1330 LT on 5 Jan 2002 in the direction of the main field

Sabaka, Olsen, and Purucker, Geophys.J.Int, 2004

On the Earth, crustal thickness and magnetization show a relationship because continental crust is thicker than oceanic crust.

On the Earth, continental and oceanic crust have different magnetic signatures, and the longest wavelengths are hidden from view.

Maus et al., 2006

Raytheon

Assumptions/Scale Issues

- Magnetic susceptibility is constant
- Areas w. significant magnetic remanence are not used in interpretation (Bangui, Kursk)
- Global seismic and magnetic data sets have comparable resolutions (SHD 120, Wavelength = 333 km for magnetic).
- Seismic data is spatially heterogenous, and of widely different quality
- Magnetic data is spatially homogenous away from high latitude auroral zones.

MF6: Magnetic intensity anomaly at geoid altitude

Regional tectonic setting: Dead Sea region

Moshen et al., GJI, 2006

Thinned lithosphere from seismic analysis

Xenoliths from western Saudi Arabia suggest thinned lithosphere & normal crustal thickness/low heat flow

Magnetic field provides depth to Curie isotherm, not Moho depth

Raytheon

Thermal structure of Red Sea rift basin and surrounding region

Magnetic crustal thickness using MF-6 and different seismic starting models

Raytheon

GSC, 1995

New Missions and Experiments

- Maryland's Dynamo experiment
- Swarm satellite constellation (2010)
- Mercury MESSENGER (2011)
- Maven (2013)
- Venus orbiter w. probe (?)